

Catalyst™ 皮質醇檢測:準確可靠的犬皮質醇院內診斷評估工具。

簡介

愛迪生氏症 (腎上腺皮質功能低下症) 及庫欣氏症 (皮質醇增多症) 在犬隻中屬於相對少見的內分泌疾病,但準確診斷及有效管理仍相當關鍵。14在愛迪生氏症,適時介入治療可望挽救生命;而在庫欣氏症,適當的治療則能顯著提升動物病患的生活品質,同時有助於減輕照顧者的負擔。

皮質醇即時照護檢測 (POC) 雖已存在一段時間,多數臨床醫師仍因為對於高度準確性且精確的檢測分析需求,而慣於將皮質醇檢測交由商業獸醫實驗室進行。5 不過,若院內即時照護檢測能達到參考實驗室等級的水準,就能為臨床方面提供諸多的優勢。比方說,單次靜態皮質醇檢測結果若 $\ge 2.00~\mu g/dL$,就能排除犬隻愛迪生氏症的診斷,是相當實用且有效的優勢,適用於出現相關的臨床症狀或臨床病理變化的犬隻,像是慢性腸胃道問題、急性嘔吐或腹瀉、低白蛋白血症或電解質失衡。6.9

在看診當下能掌握可靠的皮質醇檢測結果,有助於及時與飼主當面進行 溝通。如此不僅有助於飼主與醫師共同參與決策,也有助提升飼主對診 斷與治療建議的理解與配合。

本研究旨在評估以 Catalyst™ 皮質醇檢測這項新型即時免疫分析檢測,在定量犬隻血清與血漿檢體中皮質醇濃度時的分析表現。

材料和方法

方法學比較

本研究透過方法學的比較分析,在臨床條件下,以705 份因臨床用途所採樣的犬隻血清或血漿檢體,來評估 Catalyst 皮質醇檢測的準確性。研究中所使用的檢體,皆以設置於美國的18間獸醫診所內之 Catalyst 生化分析儀進行分析。診所將每隻動物病患剩餘的血清樣本交給 IDEXX Laboratories,透過在 IMMULITE™ 2000 免疫測定系統執行的 IMMULITE™ Veterinary Cortisol 測定法*測得皮質醇濃度。以兩次 IMMULITE Veterinary Cortisol 測量結果的平均值作為比較的參考基準。

以 Passing-Bablok 迴歸分析方法學評估Catalyst 皮質醇檢測與參考方法學之間的相關性 (R 值) 與偏差。所有方法學比較分析皆依照 CLSI EP09c 的指引來完成。 10

精確性

分析精確性是以混合犬隻血清檢體,在表 1 所列的三種皮質醇濃度進行評估。連續 10 天內,使用兩台 Catalyst Dx™ 和兩台 Catalyst One™ 生化分析儀進行檢測。每一天的早上及下午時段,每台分析儀分別進行四次重複測量,從而評估同日變異度與跨日變異度。所有精確性分析皆依照 CLSI EP05-A3 的指引完成。□

交叉反應

瞭解檢測中所用抗體是否會與其他類固醇激素產生交叉反應,對於評估皮質醇的檢測成效十分重要,因為交叉反應可能會影響該檢測的臨床應用價值。為了評估這項影響,將兩種不同皮質醇濃度 (2.10 μg/dL 和 25.00 μg/dL) 的混合犬隻血清檢體等量分裝,並各別加入 13 種天然存在的類固醇激素及臨床常用的皮質類固醇藥物 (表 2)。以 Catalyst 生化分析儀將每份加標檢體進行 12 次重複測量,並按照以下計算公式,使用平均值計算交叉反應率:

交叉反應率 = [(加標濃度結果 - 實際濃度結果) / 類固醇濃度] x 100

干擾物質

製備皮質醇高濃度 (31.20 μg/dL) 與低濃度 (2.10 μg/dL),且目測不含干擾物質的混合犬隻血清檢體,來進行干擾物質測試。分別以犬紅血球裂解液[†]、Intralipid^{™‡}和膽紅素二牛磺酸⁸,來評估溶血、脂血症和黃疸等常見干擾物質對測量的潛在影響。將等量分裝的混合血清檢體,分別加標不同濃度的特定干擾物質,詳見表 3。隨後以 Catalyst One 和 Catalyst Dx 分析儀分析所有檢體,評估該測定法對這些干擾物質的耐受性。平均偏差百分比計算公式如下:

平均偏差百分比 = (加標檢測結果 – 實際檢測結果) / 實際結果 \times 100 所有干擾物質分析皆依照 CLSI EP07 指引完成。 12

結果

方法學比較

圖 1 評估檢測範圍內之相關性迴歸圖。Catalyst 皮質醇檢測與參考方法學有優異的相關性(R = 0.95),且偏差極小,甚至沒有偏差 (斜率是 1.06)。

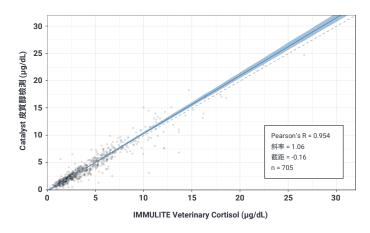


圖 1 Catalyst™ 皮質醇檢測與 IMMULITE™ Veterinary Cortisol 測定法於 犬隻檢體報告範圍內之成對比較相關圖 (Passing-Bablok 迴歸)。圖中顯 示最佳擬合線 (線性迴歸,藍色實線)、95% 信賴區間 (陰影區域) 以及 X = Y 參考線 (灰色虛線)。

精確性

精確度研究結果摘列於表 1。這項測定法在臨床相關的皮質醇濃度範圍 (2.10-20.40 μg/dL) 內,總變異係數 (%CV) 均低於 10%,顯示能達到優異的分析精確度,適合獸醫臨床應用。

交叉反應

Catalyst 皮質醇檢測的交叉反應特性如表 2 所示。與天然存在之類固醇激素產生的交叉反應,期待檢測結果應不會影響臨床上的判讀。這項測定法與常用糖皮質激素藥物的交叉反應的程度,與其他市售皮質醇測定法相當。例如,檢體若採自接受過 Prednisone 或 Prednisolone 治療的患病動物,可能會呈現皮質醇濃度假性升高的反應,而 Dexamethasone則影響甚微。

干擾物質

干擾物質結果摘列於表 3。在脂血檢體中未發現干擾。不過,黃疸及中度至重度溶血會影響檢測結果。應避免使用含有上述干擾物質的檢體來進行檢測。

結論

與 IMMULITE Veterinary Cortisol 測定法對比,Catalyst 皮質醇檢測的表現僅有極低的偏差、有優異的精確性及高度的相關性,證實了應用於犬隻皮質醇測量的即時檢測,能發揮其準確性與可靠性。

黃疸或中度至重度溶血反應的檢體可能會影響檢測的表現,應避免使用。

Prednisone 和 Prednisolone 這類的皮質類固醇藥物會與這項檢測方法 學產生交叉反應,可能導致測得的皮質醇濃度假性升高。動物病患如果 正在接受皮質類固醇藥物的治療,應於適當的停藥期過後再進行檢測, 停藥期長短則依所用藥物種類、劑量及使用期間而定。

雖然 Dexamethasone 不會與 Catalyst 皮質醇檢測產生交叉反應,但其施用會影響腦下垂體一腎上腺軸功能。因此,若患病動物懷疑有愛迪生氏症,建議施用 Dexamethasone 前先進行皮質醇檢測。

平均濃度 (μg/dL)	標準差 (µg/dL)	變異係數 (%)	重複次數
2.10	0.14	7.75	320
6.30	0.29	5.39	320
20.40	1.11	6.81	320

表 1:精確性研究結果摘要。

化合物類型	化合物	化合物濃度 (μg/dL)	Catalyst™ 皮質醇檢測交叉反應率 (%) (基準皮質醇濃度 2.10 μg/dL)	Catalyst 皮質醇檢測交叉反應率 (%) (基準皮質醇濃度 25.00 μg/dL)
天然存在的激素	Corticosterone	400	7.12	5.18
	Cortisone	400	11.24	8.56
	11-deoxycortisol	100	10.27	2.93
	17-alpha-hydroxyprogesterone	400	0.05	0.11
	Aldosterone(醛固酮)	1,000	0.13	0.15
	Progesterone(黃體素)	400	0.03	0.23
藥物	Methylprednisolone	200	0.10	0.57
	Desoxycorticosterone pivalate(DOCP)	400	0.03	0.28
	Dexamethasone (1)	400	0.02	0.51
	Dexamethasone(2)	4,000	0.01	0.04
	Fludrocortisone	1,000	4.09	2.75
	Prednisolone	8	23.87	15.56
	Prednisone	16	1.51	1.51
	Triamcinolone	5,000	< 0.01	0.02

表 2. 交叉反應研究摘要及交叉反應率計算結果。

干擾物質	干擾程度	Catalyst 皮質醇檢測濃度 (µg/dL)		平均偏差 %	
		低	高	低	高
溶血反應	品管液/未添加	2.15	30.29	_	_
	25	2.28	31.08	6.0	2.6
	150	2.55	31.02	18.6	2.4
	250	2.53	30.55	17.7	0.9
	500	2.37	28.29	10.2	-6.6
脂血症	品管液/未添加	2.18	31.49	-	_
	125	2.12	31.05	-2.8	-1.4
	250	2.12	31.05	-3.0	-1.4
	500	2.12	30.67	-2.7	-2.6
黃疸	品管液/未添加	2.07	31.77	-	_
	0.5	2.14	29.88	3.3	-5.4
	1.0	2.24	28.36	8.3	-10.7
	2.0	2.40	25.42	15.8	-20.0

表 3. 干擾物質研究結果摘要及偏差值計算結果。

參考資料

- Behrend EN, Kooistra HS, Nelson R, Reusch CE, Scott-Moncrieff JC. Diagnosis of spontaneous canine hyperadrenocorticism: 2012 ACVIM consensus statement (small animal). J Vet Intern Med. 2013;27(6):1292– 1304. doi:10.1111/jvim.12192
- Bugbee A, Rucinsky R, Cazabon S, et al. 2023 AAHA Selected Endocrinopathies of Dogs and Cats Guidelines. J Am Anim Hosp Assoc. 2023;59(3):113–135. doi:10.5326/JAAHA-MS-7368
- Galac S. Hyperadrenocorticism (Cushing's syndrome) in dogs. In: Ettinger SJ, Feldman EC, Côté E, eds. Ettinger's Textbook of Veterinary Internal Medicine Expert Consult. Vol 2. 9th ed. Elsevier; 2024:2004–2021.
- 4. Hess RS. Hypoadrenocorticism. In: Ettinger SJ, Feldman EC, Côté E, eds. Ettinger's Textbook of Veterinary Internal Medicine Expert Consult. Vol 2. 9th ed. Elsevier, 2024:2036–2045.
- European Society of Veterinary Endocrinology. Project ALIVE. Accessed June 29, 2025. www.esve.org/alive/intro .aspx
- Bovens C, Tennant K, Reeve J, Murphy KF. Basal serum cortisol concentration as a screening test for hypoadrenocorticism in dogs. J Vet Intern Med. 2014;28(5):1541–1545. doi:10.1111/jvim.12415
- Gallego AF, Gow AG, Boag AM. Evaluation of resting cortisol concentration testing in dogs with chronic gastrointestinal signs. J Vet Intern Med. 2022;36(2):525–531. doi:10.1111/jvim.16365
- Gold AJ, Langlois DK, Refsal KR. Evaluation of basal serum or plasma cortisol concentrations for the diagnosis
 of hypoadrenocorticism in dogs. J Vet Intern Med. 2016;30(6):1798–1805. doi:10.1111/jvim.14589
- Lennon EM, Boyle TE, Hutchins RG, et al. Use of basal serum or plasma cortisol concentrations to rule out a diagnosis of hypoadrenocorticism in dogs: 123 cases (2000–2005). JAVMA. 2007;231(3):413–416. doi:10.2460/jayma.231.3.413
- CLSI. Measurement Procedure Comparison and Bias Estimation Using Patient Samples. 3rd ed. CLSI document EP09c. Clinical and Laboratory Standards Institute; 2018.
- CLSI. Evaluation of Precision of Quantitative Measurement Procedures; Approved Guideline. 3rd ed. CLSI document EP05 A3. Clinical and Laboratory Standards Institute; October 2014; reaffirmed September 2019.
- CLSI. Interference Testing in Clinical Chemistry. CLSI document EP07-A2. Clinical and Laboratory Standards Institute; April 30, 2018; reaffirmed October 2022.

*Siemens Medical Solutions Diagnostics, Los Angeles, California, USA.

"犬紅血球的裂解液製備,先以生理食鹽水清洗血球,後以沒有表面活性劑的水中將其裂解。

"Intralipid" (Sigma-Aldrich, Inc., St. Louis, Missouri, USA), 一種添加了磷脂來穩定的大豆油。

"Billirubin conjugate (Scripps Laboratories, San Diego, California, USA; catalog number: B0114), a synthesized ditaurobilirubin.